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MULTI-SAMPLE CLUSTER ANALYSIS AS AN ALTERNATIVE

TO MULTIPLE COMPARISON PROCEDURES

HAMPARSUM BOZDOGAN

Department of Mathematics

University of Virginia

Charlottesville, Virginia

ABSTRACT

This paper studies multi-sample cluster analvsis, the problem of grouping

samples, as an alternative to multiple comparison procedures through the development and

the introduction of model-selection criteria such as those: Akaike's

Information Criterion (AIC) and Schwarz's Criterion (SC), as new procedures

for comparing means, groups, or samples, and so forth, in identifying and selecting

the homogeneous groups or samples from the heterogeneous ones in multi-sample data

analysis problems.

An enumerative clustering technique is presented to generate all possible choices of

clustering alternatives of groups, or samples on the computer using efficient combinatorial

algorithms without forcing an arbitrary choice among the clustering alternatives, and to find

all sufficiently simple groups or samples consistent with the data and identify the best

clustering among the alternative clusterings.

Numerical examples are carried out and presented on a real data set on grouping the
samples into fewer than K groups. Through a Monte Carlo study, an application of

multi-sample cluster analysis is shown in designing optimal decision tree classifiers in

reducing the dimensionality of remotely sensed heterogeneous data sets to achieve a

parsimonious grouping of samples.

The results obtained demonstrate the utility and versatality of model-selection criteria

which avoid the notorious choice of levels of significance and which are free from the

ambiguities inherent in the application of conventional hypothesis testing procedures.

KEY WORDS AND PHRASES: Multi-Sample Clushier Analysis; Multiple Comparison

Procedures; Model Selection Criteria; Akaike's Information

Criterion (AIC); Schwarz's Criterion (SC).
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1. INTRODUCTION

Many practical situations require the presentation of multivariate data from several

structured samples for comparative inference and the grouping of the heterogeneous samples

into homoxeneous sets of samples.

For example, in analysis of variance, to describe any variations of the treatment

means, we partition the treatment means into groups with hopefully the same mean for all

treatments in the same group to find a more parsimonious grouping of treatments (Cox and

Spjitvoll 1982).

In remote sensing technology, see, e.g., Argentiero et al. (1982), we classify or group

different samples of large dimensional remotely sensed heterogeneous data sets into

homogeneous sets of samples to reduce the dimensionality of these data sets and to design

optimal decision tree classifiers. Decision tree classifiers are popular and useful to study
4 the underlying data structure which have the property that samples are subjected to a

sequence of decision rules before they are assigned to a unique class to identify and

determine the number of types that the classes originally might have been consisted. Such

an approach, providing that it is well designed, will give us a classification scheme which is

accurate, flexible, and computationally efficient.

The purpose of this paper is, therefore, to propose and to study Multi-Sample Cluster

Analysis (MSCA), the problem of grouping samples, developed by this author (see, e.g.,

Bozdogan 1981, Bozdogan and Sclove 1984), as an alternative to Multiple Comparison

Procedures (MCP's) through the development and introduction of model-seiection criteria

such as those of Akaike (1973, 1974). Akaike (1978), and Schwarz (1978), as new procedures

for the comparisons and identification of various collections of grouvs, sampIes, treatments,

experimental conditions, or diagnostic classifications, and so forth, in multi-sample data

analysis problems.

In the statistical literature, the Analysis of Variance (ANOVA) is a widely used model

for comparing two or more univariate samples, where the familiar Student's t and F

statistics are used for formal comparisons among two or more sampies. In the muiti-sampie

case the Multivariate Analysis of Variance (MANOVA) is a widely used model for comparing

two or more multivariate samples. In the MANOVA model, the likelihood ratio principle

leads to Wilks' (1932) lambda, or in short Wilks' A criterion as the test statistic. It plays

the same role in the multivariate analysis that F-ratio statistic piays in the univariate case.

Often, however, the formal analyses involved in ANOVA or in MANOVA are not

revealing or informative. For this reason, in any problem where a set of parameters is to

be partitioned into groups, it is reasonable to provide a practically useful statistical

- .C,
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procedure or procedures that would use some sort of statistical model to aid in comparisons

of various collections of comparable groups, samples, etc., and identify the homogeneous

groups from the heterogeneous ones, or vice versa, and tell us which groups (or samples)

should be clustered together and which groups (or samples) should not be clustered

together.

The object of this paper is to point out an enumerative clustering technique to

generate all possible choices of clustering alternatives of groups or samples on the

computer using efficient combinatorial algorithms without forcing an arbitrary choice among

the clustering alternatives.

Thus the central idea is that through Multi-Sample Cluster Analysis (MSCA) as an

alternative to Multiple Comparison Procedures (MCP's) and through the use of

model-selection criteria we shall find all sufficiently simple partitions of groups or samples

consistent with the data and identify the best clustering among the alternative clusterings.

We achieve this by utilizing a new information-theoretic approach to the multi-sample

conventional tests of homogeneity models discussed in Bozdogan (1984). This approach

unifies the conventional test procedures without the worry of what level of significance a

one needs to use. In a conventional pre-test situation, it has become customary to fix the

level of significance a priori at, for example, 1%, 5%, or 10% levels regardless of the

number of parameters estimated within a model. This is essentially arbitrary and no

rational basis exists for making such an arbitrary choice. Model-selection criteria adapt

themselves to the number of parameters estimated within a model to achieve parameter

parsimony, and the significance level is adjusted accordingly from ont model to the next.

In Section 2, we shall briefly discuss the Multiple Comparison Procedures (MCP's) and

present their formulation in the multivariate case. Then we shall outline the existing

problems inherent with the MCP's. In Section 3, we shall propose Multi-Sample Cluster
Analysis (MSCA) as an alternative to conventional Multiple Comparison Procedures (MCP's).

We shall define the general MSCA problem, and discuss how to obtain the total number of

clustering alternatives for a given K, the number of groups or samples in detail for both

MCP's and MSCA. In the subsequent section, that is, in Section 4, we shall briefly give

the formal definitions of model-selection criteria and present the three most commonly used

multivariate multi-sample models, that is, multi-sample hypotheses, and give their

model-selection-replacements. For more on this, we refer the reader to Bozdogan (1984).

In Section 5, we shall give numerical examples on a real data set, and show an application

of MSCA in designing optimal decision tree classifiers.

Finally, in Section 6, we shall present our conclusions, and give a listing of the

combinatorial subroutines in the Appendix.

2
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2. MULTIPLE COMPARISON PROCEDURES (MCP's)

In the univariate analysis of variance (ANOVA) model for testing the equality of K

population means, as we mentioned in the introduction of this paper, the test statistic

F = S2/S is used for comparing several population means. If we compute the value

of F for the sample data, and if it is larger than the critical value of F obtained from

standard F-tables at some prescribed a level, then we reject the overall, "omnibus", null

hypothesis

Ho : 111  1U2 = "= K (2.1)

in favor of the alternative hypothesis given by

H1 : the K population means are not all equal.

While rejecting the null hypothesis gives us some information about the population

means, namely the heterogeneity of the means, we do not know which means differ frem

each other. Hence, both ANOVA or MANOVA do not pinpoint exactly where the significant

differences lie, and an F test alone, generally falls short of satisfying all of the practical

requirements involved (Duncan 1955). For example, if K = 3 and He: 1 =U2=IA3 is

rejected, then we do not know whether the main differences are between )A1 and J2A or

between 1 and UA3 . and so on. Therefore, we are faced with many new problems, and

we may ask the following simple and yet important questions: Does u1 differ from

A2 ?  Does U1 differ from U3 ? , Which of the samples are considered coming from

common populations, which are not ?

As in the univariate ANOVA model, the same problems arise in the multivariate

analysis of variance (MANOVA) model also. That is, rejection of the null hypothesis does

not indicate which groups, samples, or treatments, or any combinations of them are

different and which should be considered as coming from common populations, which are
not.

Therefore, it is important to obtain some idea where the differences in the means or

mean vectors are when we reject the null hypothesis and establish some relationships among

the unequal means or mean vectors.

3
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2.1 Formulation of MCP's

In the univariate case, i.e., in the case of one response variable, there exists a

multitude of Multiple Comparison Procedures (MCP's) available in the literature. However,

in the multivariate case, even only two variables, there seems to be a few applicable

techniques have been developed for MCP's in practice. The problem of comparing the means

o:' two Multivariate Normal (MVN) populations, assuming a common covariance matrix 1,

can easily be extended to the case of comparing K normal populations when there are ng

independent p-dimensional observations from the gth population.

Following Seber (1984, p.433), we now recapitulate the formulation of MCP's in the

multivariate case.

Let Ygi be the ith sample observation (i=1,2.....ng) from the ith MVN distribution

Np(J gX) (gff1,2....K) so that we have the following MANOVA model for comparing g

population mean vectors.

Ygi = g + gi (g 1,2,.2 ..... ng) (2.2)

where the egi are i.i.d. Np(O,1). Then

y 
€

y ' 
'

-12 -12

1 0 ... 0 A'

0 1 . . . 0 ''
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or

XB + E . (2.3)

The hypothesis of equal population means, Ho: u 1 = U2 = "'" = uK , can be written

in the form

1 0 ... 0 -1 JA''~'1
0 1 ... 0 -1 '

^#2

CB = = . (2.4)

0 0 ... 0 -1 J'

L KJ

When the hypothesis of equal population means, HO , is rejected, those means, or linear
combinations of them, that led to the rejection of the hypothesis are of interest. We,

therefore, use Roy's (1957) maximum root test to construct simultaneous intervals for the

mean differences since it has the advantage of being linked directly to a set of

simultaneous confidence intervals, although it is not as powerful as the likelihood ratio

test.

For a general linear model we have

1-a = Pr[f max <  a]

Pr[ a'CBb E a'C b + (0 a'C(X'X) C'a-b'Wb/

for all a, bi . (2.5)

Thus a set of multiple confidence intervals for all linear combinations is given by

a'CB b + (0a C(X'X)- C'ab' bW b) (2.6)

and the set has an overall confidence of 100(1-a)%, and where B = (X'' X'y

and W is the "within-groups" or "within-samples" SSP matrix. Applying this to our one

way model in (2.4), we have

: - .. .-.. . ., .. , ... ........ .. . . . . .. ..- , ,.. . . . ' - . . .. . ..



pI

(1-2 - K)  -

CB = (2.7)

(I-A-I - K) '

so that

a'CB = a1 (I -K + a 2 (u2 - '" K-1 (UK-1 -K

k

g-I g g

K-1 K
where Cg ag (g1,2....,K-1), cK =- gan c = 0. We therefore

9 g1 g1

find that the class of all contrasts of the IgA Furthermore, since in the one-way

classification model gg. is the least squares estimate of tg,

K
a'C = cg g.

and, when p 1

2
Var c~i J. a 2

Hence, the probability is 1-a that [with Oa =  a/ll-1a)]

c g ' bE cg b + (0 b'Wb )1/2 (2.8)

g9 g g9 9 g - a g n j

simultaneously for all contrasts and all b.

In general, we would be interested in pairwise contrasts u. - IA and the

corresponding subset of (2.8), namely,

4 6



(1 - s)'b E Gr - s )'b + (0 + W)bWb) 1 / 2
. (2.9)11 a - n r  n

If the maximum root test of Ho: C B = 0 is significant, then at least one of the

intervals given by (2.8) does not contain zero and we can use the simultaneous intervals to

look at any contrast suggested by the data.

Krishnaiah (1965, 1969, 1979), based on a multivariate analogue of Tukey's Studentized

range, proposed a set of simultaneous intervals for all linear combinations

(11r -slQ'b Writing H: JA J .U as

H° = A A Hors
r s
r<s

where Hors: - = 0o, we can test each of the I f [K) = K(K-1)/2
ors " r S 2

2 2hypotheses Hors using a Hotelling's T2 statistic, Tk, say, based on a pooled estimate

§w =V/Y of_2, where Y = 7- (ng - 1) = n - K. We can test H using

2 2
Tmax =max Tk.

If ca satisfies Pr[Tm <c IH=1-a, then PrT 4 a,

k = 1,2,...,[ I H0o ] = 1 - a, and the probability is 1-a that

W -u )'bE(7 - )'b+(c (-L+-L)b'Wb)1/ 2

-r -S -r- Ys. a n r n

simultaneously for all r, s (rss) and for all b. These intervals are the same as (2.9),

except that 0 is replaced by c Since the intervals of (2.9) are a subset of (2.8), the

overall probability exceeds 1-a and 0 a > ca/," Unfortunately, extensive tables of ca are

not available.

If we are interested in just a certain number, say, m, of the elements of B, we can

use the Bonferroni method of constructing m conservative confidence intervals with an

overall confidence of at least 100(1-a)%, and a t-value ta/2m
For more details on MCP's, we refer the reader to Duncan (1955), Gabriel (1964,

1968), Miller (1966, 1981), O'Neill and Wetherill (1971), Thomas (1973). Spj0tvoll (1974),
Seber (1984), and many other authors since the literature is quite rich in this area.

7



2.2 Problems With MCP's

While many MCP's have been proposed in many different papers in the univariate

case, including the ones referred to as above, unfortunately, there are still some serious

drawbacks of these procedures, and there are a few MCP's available in practice in the

multivariate case which are operational.

The major problems with MCP's in general can briefly be summarized as follows.

(i) MCP's either reject or accept the hypothesis of homogeneity, that is, equality of

means, or equivalently, an MCP declares each set of means as heterogeneous (rejected) or

homogeneous (accepted). MCP decision rule is not transitive; i.e., model M1 may be

preferred to M2, M2 to M3 , and M3 to M1 , etc.

(ii) The decision to accept or reject a model depends on a given significance level a

to maximize the power of the test. In an MCP, it is not clear how the level of the test

should be defined, and it is not clear how to control the overall error rate. Also, it is not

clear what should be optimized.

(iii) Running all 2 ) = K(K-1)/2 pairwise MCP's increases the number of null

hypothesis to be tested, and more likely we would reject one of them if all the null

hypothesis are actually true, and thus increasing the probability of incorrectly rejecting at

least one Ho.

(iv) Existing MCP's in general are all devised to handle pairwise comparisons. They

need to be extended to handle all k ) k-subsets of a K-set hypothesis.

(v) In MCP's, arbitrary assumptions are made on the parameters of the models. For

example, in the formulation of MCP's in Section 2.1, for the MANOVA model we assumed a

common dispersion matrix _ For unequal 1 9 , i.e., for covariance heterogeneity, Olson

(1974) from a large scale simulation study, reported a high inflation in Type I error and

excessive rejections of Ho on the basis of Roy's maximum root test, 0max' In this
2 arcspnct the olh.r two statistics Wilks' A and Hotelling's Tg behave like Omar

Therefore, it might be expected that in the presence of covariance heterogeneity, MCP's
might also give erroneous results.

(vi) In the multivariate literature there does not exist any simple MCP to handle the

case where both mean vectors and the covariance matrices in a model might vary and we

" still want to carry out comparative simultaneous inference. The same holds in the case of

complete homogeneity, that is, when data are assumed to have come from identical

populations and we still want to carry out comparative simultaneous inference.

Clearly, there are many problems connected with the existing MCP's. Therefore, for

* this reason, in the next section, we shall introduce and utilize a general methodology called

o Multi-Sample Cluster Analysis (MSCA) as an alternative to Multiple Comparison Procedures

(MCP's). MSCA depends on fast and efficient combinatorial aigorithms. The analysis is

8
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done under the best fitting model, and therefore, no arbitrary assumptions are made on the

parameters of the model. The only assumption made is the multivariate normality on the

data, which can be tested by using the multivariate measures of skewness and kurtosis

(Mardia et al. 1979).

4
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3. MULTI-SAMPLE CLUSTER ANALYSIS AS AN ALTERNATIVE TO MULTIPLE
COMPARISON PROCEDURES

The problem of MCP's can be viewed as one of clustering of means, groups, samples,
or treatments. The possibility of using cluster analysis in place of an MCP appears to be

originally suggested by Plackett in his discussion of the review paper by O'Neill and

Wetherill (1971).

In the literature, Scott and Knott (1974) used a cluster analysis approach for grouping

means; Cox and Spjotvoll (1982) used simple partitioning of means into groups based on the
standard F statistic, to mention a few. Their procedures in the spirit are similar to ours,

but in general our method is completely different and new. Therefore, here we shall

propose MSCA or what Gower (1981) calls it, "K-Group Classification" or equivalently what

we also call "K-Sample Cluster Analysis" as an alternative to MCP's.

Next, we discuss the general MSCA problem.

3.1 The Multi-Sample Cluster (MSCI Problem

The problem of Multi-Sample Cluster Analysis (MSCA) arises when we are given a

collection of ,rou s, profiles, samples, treatments, etc., whether these are formed naturally

or experimentally, and our goal is to cluster these into homogeneous groups. Thus the

problem here is to cluster "groups" or "samples" rather than "individuals" or "objects" as in

the single-sample case.

Suppose each individual, object, or case, has been measured on p response or outcome

measures (dependent variables) simultaneously in K independent groups or samples (factor

levels). Let

(nlxp)

X 2 (n2 xp)

_(nxp) = (3.1)

3K (nKxP)

be a single data matrix of K groups or samples, where X(ngxp) represents the

observations from the gth group or sample, g=l,2,...,K, and n = I ng. The goal of

101
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cluster analysis is to put the K groups or samples into k homogeneous groups, samples, or

classes where k is unknown and varying, but k 4 K.

Thus we obtain a smallest number k such that the data are consistent with K groups,

and from a robustness viewpoint of test statistics, K should generally be as small as

* -possible. Surprisingly, robustness properties do not always improve with increasing group

size: small groups are preferred to achieve a parsimonious grouping of samples, and in

general to reduce the dimensionality of multi-sample data sets.

We generate all possible clustering alternatives of groups or samples on the computer

using efficient combinatorial algorithms and we assemble information from anl the different

groupings of size K without forcing an arbitrary choice among the clustering alternatives.
We next discuss how to obtain the total number of clustering alternatives for a given

K, the number of groups or samples.

3.2 Determining the Number of Clustering Alternatives

Let K be the number of samples, and let k be the number of clusters of samples. If

we use MCP's, and if all pairwise comparisons among the K groups were desired, then this
*.would require in general KC (K[) = K(K-1)/2 tests. On the other hand, if we consider

the combinations of K groups or samples taken k at a time, where k 4 K, then there are

"-. (K) k-subsets of a K-set altogether. In Appendix A.1, we give a simple algorithm called

MCP which constructs all the possible alternatives sequentially in "lexicographic", i.e., in

ssalphabetical order". A listing of the output from the subroutine of MCP is shown in Table

3.1.
We note that the existing conventional MCP's are not devised to handle the case of[K W , ek-subsets of a K-set hypotheses or tests for k > 2. They all need to be modified

% accordingly.

If we use the complete enumeration technique, then the number of clustering of K

groups or samples into k nonempty clusters of samples is given by the following theorem.

Theorem 3.2.31. The number of ways of clustering K samples or groups into k-sample

clusters where k 4 K such that none of the k-sampe clusters is empty is given by

k K

0-
when the order of samples (or groups) within each cluster is irrelevant.

Proof Duran and Odell (1974, p.26).
In this theorem the k-sampie clusters are assumed to be distinct. However, in

clustering or partitioning K samples into k subsets, none of which is empty, the order of

k-sample clusters or k-subsets is irrelevant. Consequently, from this fact and Theorem

0



3.2.1, it follows that the total number of ways of clustering K samples into k-sample

clusters (or subsets) is given by

kK- ()g ( K (3.3)

which is known as the Stirling Number of the Second Kind, which gives us the number of

clustering alternatives.

If k, the number of clusters of samples is known in advance, then the total number

of clustering alternatives is given by S(K,k). However, if k is not specified a priori and is

unknown, but k < K, then the total number of clustering alternatives is given by

K
X S(K,k) . (3.4)
k-L

S(K,k) can be written in terms of the recursive formula

S(K,k) = kS(K-1,k) + S(K-1,k-1) with S(1,1)= 1 (3.5)

and S(1,k) = 0 for k 0 1, and S(K,2) = 2 K- - 1.

For detailed explanations and proofs, see, e.g., Duran and Odell (1974), and Spith

(1980). Table 3.2 gives S(K,k) for values of K and k up to 10 which is generated from the

subroutine STIRN2 in Appendix A.2. This subroutine constructs a table of total number of

clustering alternatives for various values of K, number of samples, and k varying number of

clusters of samples.

Consider, for example, K = 4 samples. We now wish to cluster K = 4 groups or

samples first into k = 1 group or sample, k = 2 groups or samples, k = 3 groups or

* samples, and k = 4 groups or samples in a hierarchical fashion. In order to be able to

generate all possible clustering alternatives, we utilize Table 3.2. We have the total

number of ways of clustering K = 4 groups or samples into k = 1 homogeneous group or

sample is 1. The total number of ways of clustering K = 4 groups or samples into k = 2

homogeneous groups or samples is 7. The total number of ways of clustering K = 4 groups

or samples into k = 3 homogeneous groups or samples is 6, and finally, the total number of

0 ways of clustering K = 4 groups or samples into k = 4 homogeneous groups or samples is

1. Thus adding up these results, we obtain, in total 15 clustering alternatives as the total

"-""for K = 4 groups or samples into k = 1,2,3, and 4 homogeneous groups. We note that 15

is nothing but the sum of the values of row 4 in Table 3.2.

In general, clustering alternatives can be classified according to their representation

forms to make it easy to list all possible clustering alternatives. The subroutine REPFM in

12
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Appendix A.3 gives the partition of K (number of sampies) which is a positive integer, into

a specified k number of parts. For example, the representation forms of K = 4 groups or

samples into k = 1,2,3 and 4 groups or samples are:

4= (4)

=(3) + (1)

=(2) + (2)

( 2) + (1) + (1)
=(1) + (1) + (1) + ()

*where each of the components in a representation (g) denotes the number g, of groups or

samples in the corresponding cluster. The components of a representation form will always

be written in a hierarchical order to depict the patterns of clustering alternatives. In our

example there are 15 chistering alternatives but only 5 representation forms. In general

the number of representation forms is much smaller than the number of clustering

I alternatives.

To generate and list the clustering alternatives corresponding to their representation

*forms, we use the subroutine ALLSUB given in Appendix A.4. This subroutine generates

* and lists all the simple patterns of clustering alternatives for a specified number of samples

* K for Multi-Sample Cluster Analysis (MSCA). For example, Table 3.3 gives a simple pattern

of clustering alternatives when K = 3 and K = 4 groups or samples, and we wish to cluster

* them into k = 1L2,3 and k = 1,2,3 and 4 homogeneous groups, respectively.

Looking at Table 3.3 for K = 4 groups or samples, we see that, in alternative one,

*the group or sample 1,2,3 and 4 are all clustered together. In terms of a hypothesis on

means, this corresponds to Al 2- 2 = IA3 2- N4 all being equal. Hence,

indicating that group 1,2,3, and 4 are all homogeneous or identical. On the other hand, in

ralternative fifteen, the group or sample 1.,.3, and 4 are clustered as singletons. In terms

* ~of hypothesis on means, this corresponds to u1l, u2  1.ad all being different,

and therefore, we have 4-sample clusters. Hence, indicating that groups 1,2,3, and 4 are

*all heterogeneous. In a similar fashion, we interpret the other clustering alternatives

continuing down the line of Table 3.3.

*.In concluding this section, we see that in general the total number of ways of

clustering K groups or samples into k homogeneous groups or samples is given by equation

4 (3.3), and the total number of possible clustering alternatives is given by the expression

(3.4). Furthermore, the listings of the necessary combinatorial subroutines are presented in

the Appendix.
Having discussed how to determine the n,.mber of clustering alternatives, we might

ask more questions as follows which need to be answered.

i) How do we identify the best fitting or approximating model?

13



(ii) Which clustering alternative do we choose?

(iii) Is it fair to compare different models at the same risk level?

(iv) Should we assume common or varying variance-covariance matrices in

clustering samples?

(v) How do we interpret the results?, and so on.

3.3 Splitting Algorithm for Multi-Sample Cluster Analysis (MSCA)

When the cardinality of samples to be clustered is more than K = 10 groups or

samples, to save computer time and cost of computation, we use the following Slittinq

Algorithm to search for an optimal clustering alternative for k = 1,2,....10. groups or

samples, stage-wise.

STAGE-I : Start with k = 1-Sample Cluster, that is, when all the groups or samples are

all together in their own cluster, and compute the AIC and SC.

STAGE-2 K-Samples in the root node is split into k = 2-Sample Clusters by using the

Stirling Number of the Second Kind (STIRN2) subroutine. The A[C's and SC's

are computed for all the clustering alternatives and the best clustering

alternative is 'chosen by the minimum value of AIC or SC to be split next.

* STAGE-3 The best clustering alternative in STAGE-2 based on the value of the criteria

is now split into k = 3-Sample Clusters by STIRN2, and the AIC's and SC's

are computed to choose the best k = 3-Sample Clusters.

STAGE-4 The process in STAGE-3 is repeated until all the groups are clustered in their

own singleton clusters.

In this manner, the Splitting Algorithm moves from one optimal stage to the next

instead of generating all possible clustering alternatives at once, and then searching for the

best clustering alternative as k (number of clusters of samples) varies. This requires

enormous storage space on the computer and it is very prohibitive, but nevertheiess, is not

impossible to do. Our approach is very effective in the sense that it is more advantageous

over the Binary Splitting Algorithms used in the literature since one can see and construct

the stage-wise optimal decision trees as one waiks through the algorithm.

In the next section, Section 4, we shall present our proposed new approach, nameiy

14



model-selection criteria such as Akaike's Information Criterion (AC) and Schwarz's Criterion

(SC) (see also, Akaike 1978). as new procedures for comparisons and identification of groups

or samples under three different but linked multivariate models, and give their
AIC-replacements.

1
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4. MODEL-SELECTION CRITERIA AND MULTIVARIATE MODELS

4.1 Model-Selection Criteria

The "classical" or "conventional" approach to the model selection problem has its

basic roots in statistical hypothesis testing problems. Hypothesis testing problems are

always based on the assumption that available data are actually generated from one type of

model with a known structure, and the goal is to select this model by analyzing the given

data set.

On the contrary, in recent years, the literature has placed more and more emphasis

on model selection criteria or procedures. The necessity of introducing the concept of

model selection or model identification has been recognized and the problem is posed on the

choice of the "best" approximating model among a class of competing models by a suitable

model selection criteria given a data set. Model selection criteria are figures of merit for

competing models. That model, which optimizes the criterion, is chosen to be the best

model.

Suppose there are K alternative models Mk, k = 1,2,...,K, represented by the densities

f 1( ), f2(02). fK{- 1 9K) for the explanation of a random vector x and

given n observations, and for the identification, comparison, and the choice of the models

(Mk: k E K) with different number of parameters. Akaike, in his pioneering work in a

very important sequence of papers, including Akaike (1973, 1974, 1977, 1981), developed a

model selection criterion for the identification of an optimal and a parsimonious model in

data analysis from a class of models, which takes model complexity into account. His

approach is based on the Kullback-Liebler [iformation (KLIC) and the asymptotic properties

of maximum likelihood ratio statistic. The AIC statistic is an estimator of the risk of a

model under the maximum likelihood estimation and it is defined as follows.

Definition 4.1.1 Let (Mk: k E K) be a set of competing models indexed by k = 1,2 .... K.

Then, the criterion

AIC(k) = -2logeL[i(k)] + 2m(k) (4.1)

which is minimized to choose a model Mk over the set of models is called Akaike's

Information Criterion (AIC).

In (4.1), L[e(k)] is the likelihood function of observations, 9(k) is the maximum

likelihood estimate of the parameter vector 9 under the model Mk, and m(k) is the

number of independent parameters estimated when Mk is the model. According to AIC,
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inclusion of an additional parameter is appropriate if log L[b(k)i increases by one unit or
e#

more, i.e., if logeL[O{k)1 increases by a factor of e (- 2.7i8) or more.

Recently, Akaike (1977, 1978) and Schwarz (1978) has developed a new modei-selection

cr iterion, callhd M[C, or what we will denote it here by SC, which is defined as follows.

Definition 4.1.2 Let IMk: k E K) be a set of competing models indexed by k = 1,2,....K.

Then, the criterion

SCk = -2logeL[Ok)] + m(k)logen (4.2)

which is minimized to choose a model Mk over the set of models is called Schwarz's

Criterion (SC).

The criterion (4.2) is derived from a first-order approximation to the posterior

probability of Mk , over a set of models. We note that this is similar to Akaike's Bayesian

Information Criterion (BIC) in terms of its dependence on logen which was developed by

Akaike (1977, 1978).

According to Schwarz's Criterion (SC), an additional parameter will be included only if

it increases loge L[OW(k)] by an amount greater than loge (n)/2, that is, if L[8(k)] increases

by a factor of square root of n or more. Since, for n greater than 8, logen exceeds 2,

Schwarz's Criterion favors lower dimensional models as does Akaike's BIC. For large

sample sizes, AIC and SC differ from one another in the manner in which they adjust the

usual likelihood ratio statistic, taking into account the difference in dimensionality between

the models.

In the literature, there exists other Akaike-type model-selection criteria which can be

generalized and be put into what we call Generalized Information Criterion (GIC) defined by

GIC(k) = -2log e L[e(k)] + a(n)m(k) + b(k), (4.3)

where n is the sample size, log e = In denotes the natural logarithm, L[Q9(k)] ,-onotes Lhe

maximum of the likelihood over the parameters, and m(k) is the number of independent

parameters in the k-th model. For a given criterion, a(n) is the cost of fitting an

4 additional parameter and b(k) is an additional term depending upon the criterion and the

- model k. For example, Kashyap's (1982) Criterion (KC) falls under the expression for GIC

given in (4.3). Kashyap's Criterion (KC) is based on reasoning similar to BIC and SC, but

contains an extra term, and it could be expected to perform better. However, it is not

conveniently usable in applications, especially in the type of probiems we are looking at in
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this paper. In KC, the extra term b(k) = logeldetB(k)] where det denotes determinant and

B(k) is the negative of the matrix of second partials of loge LiM(k)], evaluated at the

maximum likelihood estimates. Therefore, for our purposes, it is prohibitively expensive to

compute KC and its extra term. For this reason, we have chosen only to work with AIC

and SC which are sufficient for all practical purposes. Hence, we have chosen not to

introduce Kashyap's Criterion (KC) here.

We next derive the forms of AIC's only for three linked but different muitivariate

models for the convenience of the readers. For more details on this, we refer the reader

to Bozdogan (1981, 1984), Bozdogan and Sclove (1984). Derivations of SC's follow similarly.

4.2 Multivariate Models and Their AIC's

Throughout this section we shall suppose that we may have independent data matrices

-1 , L'2' ....- K where the rows of X (n Xp) are independent and identically

distributed (i.i.d.) Np(ug,Zg), g= 1,2,....K. In t-rms of the parameters
8 = ('A ,t ..... A , 112...!K) the models we are going to consider are as

~ I ^2 '~K

follows:

(i) = ( ..... --1'--.....) [m = kp + kp(p+l)/2 parameters)

(ii) = (u ,JA . , , ) im = kp + p(p+1)/2 parameters]
-1-2 -K

(iii) 9 = ([,....u, , . m = p + p(p+l)/2 parametersi.

In this section we shall derive the forms of AIC for these models. Recall the

definition of AIC in (4.1).

AIC = -2 logeL(O) + 2m
= -

2 loge (maximized likelihood) + 2m,

where m denotes the number of free parameters within the model.

4.2.1 AIC for the Test of Homogeneity of Covariances Model:

AIC ((Ug,lg)) AIC (varying a and 1)

Consider K normal populations with different mean vectors Ug and different

covariance matrices g= 1,....K. Let X . i = 1,2,..., ng, be a random sample of

i8
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observations from the g-th population Np(Ug,_1g).

Now, we derive the form of Akaike's Information Criterion (AIC) to test the
hypothesis that the covariance matrices of these populations are equal. The likelihood

function of all the sample observations is given by

K
L(ug,jg:X) = 1  XX L W (4.3)

or by

L = 12,1 - np/2 If 11: 1-rg/2 X (4.4)
g1 g

exp{-1/2 tr 1- A- 2 tr K g-

g' _ -g g g g

n

K g
where n I n andA = . (Xgi- X)(X-x)' .

got-g =-1 -g gi g

The log likelihood function is
oe(/J,_;) _ _ = og LlOg,Zg;X) ( 4.5)

K
= -(np/2) loge(2yr) - 1/2g~I rg loge I_-g

K K
_1/2 tr I - 1/2 tr g _z&I - g ,, 1 (g 'W(g -h)'

The maximum likelihood estimates (MLE's) of Mg and _ g are

S g =x .g (4.6).

and

_g= A/ng , g 1,2....K. (4.7)

Since the K populations are independent, th6 likelihood of ail the sample observations is

simply the product of the separate likelihoods, and so maximizing (4.5) is equivalent to as

maximizing the individual sample likelihoods, separately. This, thus, yieids the IMLE's given

in (4.6) and (4.7) above.

Substituting the MLE's into (4.5) and simplifying, the maximized log likelihood becomes
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-1); log e L(10 ,_ ;x) (4.8)
K

-- (np/2) loge(2) - 1/2 1 loge i nfl~ s l - (np/2).

Since g 1

AIC = -2 logeL(G) + 2m, (4.9)

where m = kp + kp(p+l)/2 is the number of parameters, the AIC becomes

AIC((Wg )) AIC (varying u and )

K
np log e (2m) + g- n l I n gen I 1 + np + 2[kp+kp(p+1)/2]. (4.10)

Since the constants do not affect the result of comparison of models, we could ignore

them and reduce the form of AIC to a much simpler form

AIC ((ug,Zg)) AIC (varying u and _)

K
9- ng loge I Ag I + 2[kp+kp(p+l)/21, (4.11)

where

n= sample size of group or sample g = 1,2,...,K,

I A I = the determinant of sum of squares and cross-products (SSCP) matrix-g

for group or sample g = 1,2,...,K,

k = number of groups or samples compared, and

p = number of variables.

However, for purposes of comparison we retain the constants and use AIC given by (4.10).
I

4.2.2 AIC for the Multivariate Analysis of Variance (MANOVA) Model:

AIC ((Ug,Z) = AIC (varying u and common _)

Consider in this case, K normal populations with different mean vectors Ug, g =

1,2,...,K, but each population is assumed to have the same covariance matrix Let

Xgi , g = 1,2 .. ,K; i = 1,2,...,ng, be a random sample of observations from the g-th

population N (Ag,).

To derive Akaike's Information Criterion (AIC) in this case, we use the log likelihood
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function given in (4.5). Since each population is assumed to have the same covariance

matrix 2, the log likelihood function becomes

46(u )MIC) logL((u ) , ;) (4.12)

K

-- (np/2)log(2m) -(n/2)log I I I -1/2tr I-g

-1/2trYZ X n 2
19 g(g _00!g -W

and the maximum-likelihood estimates (MLE's) of tand I are

Jig Xg g 1.2.4K (4.13)

and
nI

W (4.14)

where K

Substituting these back Into (4.12) and simplifying, the maximized log likelihood

becomes

2((u ) ;X) alog L((A ),;X) (4.15)

-- (np/2)log(2,r) -(n/2)log I n 1 W I -(np/2),

where W is the "within-groups" SSP matrix.

Since
AIC -- 2logeL(e) + 2m, (4.16)

where m =kp + p(p+l)/2 is the number of parameters, then A[C becomes

21



ATC((ug,Z)) AIC (varying gA and common 1) (4.17)

- np loge(2;r) + nlog e In - I + np + 2[kp + 2- .

Since the constants do not affect the result of comparison of models, we could ignore

them and reduce the form of AIC to a much simpler form

AIC ( g,) ) AIC (varying uj and common 1) (4.18)

= n log IWI + 2[kp + P-( + ,

where K

n = J n. = the total sample size,g-1l

I W I = the determinant of "within-groups" SSP matrix.

k = number of groups or samples compared,

p = number of variables.

However, for purposes of comparison we retain the constants and use AIC given by (4.17).

4.3.3 AIC for the Test of Complete Homogeneity Modei:

AIC ((WAX) AIC (common u and _)

Consider again K normal populations with the same mean vecotr u and the same

covariance matrix . To derive the form of AIC for the test of complete homogeneity

model, we set all jAg s equal to jA and ail the Z 's equal to Z in (4.3) in Section-g
4.2.1. and obtain the log likelihood function which is given by

m= logL W,_;X) (4.19)

= - np/2)log(2m) - (n/2)log I I I - 1/2tr_ _w + B

- (n/2)tr. -1 (X -A)(X -IA),.

The MLE's of jA and are

= x , (4.20)
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and

= 1/n(W + B) = Tin . 14.21)

Substituting these back into (4.19). we have the maximized log likelihood

_ 1ogL(uE;X) (4.22)

- - (np/2)log(2) - (n/21og I n- T I - (np/2).

Thus, using the equation of AIC in (4.9) again, where m = p + p(lp+1)/ 2 is the number

of parameters this time, the AIC becomes

AIC((,.)) a AIC (common u and ( (4.23)

=np loge (2yr) + nloge ln-I + np + 2[p + . 1 7 1i].

After ignoring the constants, AIC takes the simplified form

AIC 11u,_1) m AIC (common a and 1) (4.24)

= nlog I T I + 2[p + 2
e 2

where I T I = the determinant of the "total" SSP matrix. However, for purposes of

comparison we retain the constants and use AIC given in (4.23).

4.3 AIC-Replacements for Multi-Sample Conventional Tests of Homogeneity Models

In Section 4.2. having derived the exact analytical forms of Akaike's Information

Criterion (AIC) for each of the multivariate models, in this section, we shall give the

AIC-replacements for the multivariate multi-sample conventional tests of homogeneity models

and establish the relationship of AIC-replacements with that of the conventional procedures.

For more details on this, we shall refer the reader to Bozdogan (1984).

We next state the following very important theorem which we shall utilize in

establishing the relationships of the AIC-replacements and the conventional procedures.
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Theorem 4.3.1 If 01 is a parameter space in RK, and if €o is a k-dimensional subspace

of aI' then under suitable regularity conditions, for each 0 E 0 -2logX has an

20
asymptotic 2 distribution as n -.asyptoicXK- k

Proof. See, for example, Wilks (1932), and Silvey (1970, p. 113).

We are now in a position to give the AIC-replacements for the multivariate

multi-sample conventional tests of homogeneity models.

4.3.1 AIC-Replacement for Box's M for Testing Homogeneity of Covariances

As an alternative to Box's M test for testing the equality of covariance matrices for

which extensive tables are not readily available, we may summarize the condition for

rejecting

Hoa :-1 = 2 ="=ZK" (4.25)

against

Hla Not all K covariance matrices are equal.

as follows:

Relation 4.3.1. We Erect Hoa (test of homogeneity of covariances) if

AICWlgZ)) > AIC(({g,g)). (4.26)

or if

AAIC(Hob Hoa) = AIC(Iu g, )) -A1C(1 g,_g) > 0 (4.?7)

K
iff nlogIn-1Wl I nlgin IA > (k-1)p(p+l) (4.28)eg e g-

iff -21o6.a > (k-1)p(p+l) , (4.29)

where AIC((jA,_Z)) is given in (4.17) and AIC((,,_ g)) is given is (4.10), and

where -2log>ba has an asymptotic chi-squared distribution with 1/2(k-)p(p 1) degrees of

freedom by Theorem 4.3.1. Using this fact, we establish the following:
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Relation 4.3.2. For comparing pairs of models,

x2- AIC( ,Ag}} - AIC(( g,_g} 2[-(k-1)p(p+1)1. (4.30)

where X 2 is tested as a chi-square with degrees of freedom d.f. = 1/2(k-1)p(p+1).

4.3.2 AIC-Replacement for Wilks' A Criterion for Testing the Equality of Mean Vectors

As an alternative to Wilks' A Criterion, Bartlett's V statistic, and other conventional

procedures for testing the equality of mean vectors given a common covariance matrix

between the groups or samples, we may summarize the condition for rejecting

H ob : -1 - 2 9- '""K (4.31)

against

Hib Not all 9K are equal,
as follows:

Relation 4.3.3. We reject Hob (one-way multivariate analysis of variance hypothesis) if

AIC(fiu,D) > AIC(IA 1)) , (4.32)

or if

AAIC(Hoc Hob) AIC(j?) -AICag,_-) > 0 (4.33)

iff nloge I n-1 T I - nlog e I n- 1 W I > 2p(k-1) 14.34)

-'iff -21og) bb > 2p(k-1) 14.35)

because this test is done under the assumption of a common _.

AIC({A,_Z)) Is given in (4.17) and AIC(MA,)) is given in (4.23). and where

-2logobb has an asymptotic chi-squared distribution with p(k-1) degrees of freedom by

Theorem 4.3.1. Again, using this fact, we establish the following:
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Relation 4.3.4. For comparing Dairs of models,

x 2 - AIC((u..)) - AI({gg,.Z)) + 2[p(k-1)], (4.36)

wherc x is tested as a chi-sCIcIMt- witl, degrees of freedom d.f. = p(k-1).

4.3.3 AIC-Replacement for Testing Complete Homogeneity

Combining the results in Section 4.3.1 and 4.3.2, we may summarize the condition for

rejecting

Hoc : 1 =12='ik and (Z =Z2 . I k (4.37)

against

Hic Not all mean k vectors and covariance matrices are equal,

as follows:

Relation 4.3.5. We reject Hoc (test of complete homogeneity) if

AICQ(W,_1) > AICQgl',) (4.38)

and

AIC(6AOI}) > AIC((u g,g)),
or if

o ifAIC({,l}} > AIC{{ g9 g} ,) 1 4.39)

since Lob = Loc • That is, reject Hoc if

AAIC(Hoc ; Hoa) = AIC((u,_)) -AIC(({ ,_)) > 0 (4.40)

K
iff nlog e I n- 1 T I - I ng log I n- A I > p(p+3)(k-1) (4.41)

g-i e 9 g

iff -2log)bc > p(p+3)(k-1), (4.42)

where AIC((tgZg)) is given in (4.10), AIC({tg,)) is given in (4.17), and

AIC(lQ,_)) is given in (4.23).

We note that - 2 log)oc has an asymptotic chi-squared distribution with 1/2p((p+3)(k-1)
degrees of freedom by Theorem 4.3.1. Thus, we now establish our final relation as follows:
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Relation 4.3.6. For comparing Dairs of models,

x AIC((uA,7)) - AIC4(u j ) + 2[t+p(p+3)(k-1)I, (4.43)

*where x2is tested as a chi-square with degrees of freedom d.f =1/2p(V+3)(k-1).
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5. NUMERICAL EXAMPLES

In this section we shall give two different numerical examples and study Multi-Sample

Cluster Analysis (MSCA) as an alternative to Multiple Comparison Procedures (MCP's). In

Section 5.1, we shall study tests of homogeneity from model-selection viewpoint for the

varieties of rice data set given in Srivastava and Carter (1983, p.100), where the detailed

conventional analysis of this data set is discussed and treated. In Section 5.2, we shall

show the application of MSCA in designing optimal decision tree classifiers which are

popular in remote sensing technology.

5.1 Multi-Sample Clustering of Varieties of Rice

Suppose four varieties of rice (see, e.g., Srivastava and Carter, 1983), namely variety

A, B, C, and D are sown in 20 plots, where each variety of rice is assigned at random to

five plots. Two variables were measured six weeks after transplanting: xI , the height of

the plant, and x2 , the number of tillers per plant. Thus for this data set we have p = 2

characteristics, ng = 5, g = 1,2,3,4, and n = In = 20.
We next study tests of homogeneity for this data set by using our procedure, show

step-by-step analysis and compare our results with that of the conventional tests.

(i) Identification of the Best Fittina Parametric Model:

We present the summary of the AIC-values under the three parametric multivariate

normal models as follows:

AIC{((g,_X) f AIC( varying u and 1 ) = 186.324 (5.1)

AIC((mD) a AIC( varying u and common Z ) = 178.290 (5.2)

AIC(u,_)) a AIC( common u and _ ) = 185.440 (5.3)

The minimum AIC occurs under the MANOVA model in (5.2). Therefore, according to

the definition of AIC, the MANOVA model is the best fitting model for the analysis of the

varieties of rice data set. In other words, we are accepting the equality of covariance

matrices for this data set. In fact, if we perform a conventional multivariate test for the

homogeneity of covariance matrices, we obtain Box's M f 7.97272 or x= 6.173 wiLh
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P-value .722 (approximately). Hence, the acceptance of the test of homogeneity of

covriace atrcesclers he ay ora test on the homogeneity of the variety mean
vectrs hic istheMANVA ullhypothesis. As we saw above, the minimum AIC
procdur alradypickd te MAOVAmodel as the best fitting model for this data set.

(ii) Test of Homogeneity of Mean Vectors:

Having determined the best fitting model, that is, the MANOVA model, we now test

* the null hypothesis:

Hob : IANA) = (B) = (C) = ftD)

against the alternative hypothesis which negates Hob* Using Relation 4.3.3, since

AIC((u,13) 185.440 > A[C((ugZ)) 178.290, (5.4)

we reject Hob, and claim that there is a difference in varieties.

(iii) Multipile Comvarisons Under the Best Fittinz Model:

Now we need to compare four varieties of rice simultaneously under the best fitting

model, that is, under %g in terms of the parameters. For this we proceed to use

AIC(tig )) to compareth four varieties of rice Dairwise. Our results are presented

in Table 5. 1.
Looking at Table 5.1, we see that, using all the variables simultaneously, the first

* minimum A[C occurs at the alternative submodel 2 where we have WAC) as one

homogeneous pair. Second best homogeneous pair is (B,D). We never choose the pair

(A.B), that is, submodel 1, since its AIC value is quite large indicating the inferiority of

* this submodel, or indicating that there is a difference between varieties A and B, and that
they should not be put together as one homogeneous group.

Although the pairwise comparison is the most commonly used Multiple Comparison
Procedure (MCP) in the literature, it is not general, and informative. It only considers the

I:

variabilities in pairs of groups or samples, and it ignores the variabilities in other groups.
* Therefore, for this reason, we shall next propose our new methodology, that is,

Multi-Sample Cluster Analysis (MSCA), as an. alternative to Multiple Comparison Procedures

I (MCP's).
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(iv) Multi-Sample Cluster Analysis (MSCA) of Varieties:

We now cluster K = 4 samples (varieties of rice) into k = 1,2,3, and 4-Sample

Clusters on the basis of all the variables, where p = 2 in this case. We obtain in total
fifteen possible clustering alternatives by using STIRN2 subroutine in Appendix A.2. Using

a newly developed statistical computer software by this author called A[CPARM: A General

Purpose Program for Computing AIC's and SC's for Univariate and Multivariate Normal

Parametric Models, and using the MANOVA model as our best fitting model, we obtained

the results given in Table 5.2.

Looking at Table 5.2, we see that, the minimum AIC and SC clustering occurs at

alternative submodel 7, that is, k = 2-Sample Clusters is (1,3) (2,4) =_ (A,C) (B,D), indicating

that there seems to be two types of varieties of rice rather than four varieties. The
second minimum AIC and SC occur at the alternative submodel 13 and at k = 3-Sample

Clusters where we have (1,3) (2) (4) = (A,C) (B) (D) as our clustering, telling us that if we
were to cluster any one of the two varieties of rice, we should cluster varieties A and C

together as one homogeneous group, and we should cluster varieties B and D completely

separately. We note that the larger values of AIC and SC are indications of the

inferiority of the submodels. Furthermore, we can see the effect of clustering each variety

by looking at the differences of AIC's and SC's across each clustering alternative.

According to AIC and SC, the most inferior suibmodel is 8 where we have

(1,2) (3,4) E (A,B) (C,D) as our clustering.

In comparing our results in Table 5.1 and 5.2, we see that Multi-Sample Cluster

Analysis (MSCA) is much more general and informative than the pairwise Multiple
Comparison Procedures (MCP's) to be used for simultaneous comparative inference.

(v) Determining the Variables Contributing Most to the Differences in Varieties:

Since there is heterogeneity in the mean vectors (or locations) of the four varieties

of rice, we further proceed on the basis of univariate theory to study the behaviour of the

variety data on each of the p = 2 variables. Our results are given in Table 5.3.

[nterpreting the results in Table 5.3. we note that x2 = number of tillers per want

shows significant homogeneity across four var e,es of rice, and in fact, is the best variable
according to the minimum AIC value. The -%- variable, that is, x, = height of plant, on
the basis of the AIC value indicates tha& * ,r* is a difference in heights belween the

varieties. The general conclusion is that there exists more heterogeneity in means on

, l 11"n x2 across the four types of varieties of rice.

I
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5.2 Application of Multi-Sample Cluster Analysis in Designing Decision Trees in Remote

Sensing

In remote sensing technology, the decision tree classifier has been widely used in

various problems in geoscience and remote sensing, speech analysis, biomedical applications,

etc., and in many other areas. For more on this, we refer the reader to Argentiero et al.

(1982), Kulkarni and Kanal (1976), Mui and Fu (1980), Wang and Suen (1984), and others.

Using a decision tree classifier over a sjinge stage classifier, we have an advantage

in the sense that, a complex zlobal decision can be made via a series of simple and local

decisions. This enables us to use a decision tree classifier in two main types of

applications:

(i) recognition of pattern classes, and

(ii) tree classifier can make a decision much more quickly compared to single stage

classifier.

For example, in remote sensing problems one is faced with an image (or scene) which

is a rectangular array with I-rows (scan lines), and J-columns (the number of resolution

elements per scan line of one resolution element (an individual). Each cell (individual or

pixel) generates a pXl measurement vector XU, i = 1,2...[, and J = 1,2,...,J. We denote

the features by

X1, X2 .... X

The vector feature is

x=(XI, X2 .  Xp).

The observed digital image is

(xi. : i = 1,2....I, j = 1,2...J),

where FI
~Ui Xlij' x2ij' Xpij) -

is the vector of numerical values of the p features at pixed (ij). For more on this, see

also Sclove (1982).

In order to recognize an image (or scene), we need to perform classification, that is,

grouping of pixels, to check the homogeneity of large dimensional Multispectral Scanner
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(MSS) da t a sets with a view toward identifying objects, and recognizing the pattern classes,

and so forth. This is the major task of cluster analysis techniques.

After the features are extracted, a decision rule is then applied to assign the

reduced dimensional samples to available classes by merging and subjecting these samples to

a sequence of decision rules before they are assigned to a unique class. Such an approach

further reduces the dimensionality of these large dimensional data sets, and it results in an

optimal decision tree classifier which is computationally efficient, accurate, and flexible'

Argentiero et al. (1982), give an example on how to design an optimal decision tree

classifier by using a conventional statistical procedure, namely the multivariate F-test, and

give the associated table look-up decision tree classifier on a simulated heterogeneous

multivariate data set where both the mean vectors and the covariance matrices among the

five classes are varying. It seems that such an approach is primitive and the decision rule

at each stage depends upon a given significance level a. Also it is not clear how they

controlled the overall error rate in their study. We cannot simply use the usual F-tables in

the presence of covariance heterogeneity without testing the equality of covariance

matrices.

To provide an example of Multi-Sample Cluster Analysis (MSCA) for the classification

of large dimensional data sets arising from the merging of remote sensing data, we

reconstructed the data structure presented in Argentiero et al. (1982) with different sample

sizes. That is, we simulated 100 different p = 4 variate multivariate normal samples from

the K = 5 classes using the IMSL procedure GGNSM. The simulated data was based on

the class statistics given in Table 5.4 which were obtained from a Landsat-2 satellite over

a midwestern county. The five classes were consisted of two types of winter wheat and

three confusion crops, or non-wheat crops. The four channels, that is, p = 4, are those of

the Multispectral Scanner on board of the Landsat-2. The number of observations in each

class are as follows: n, = 50, n2 = 75, n3 = 100, n4 = 125, and n5 = 150 in total of

n = En = 500 observations. A grior class probabilities are assumed to be equal.

4 We note that the correct parametric model for the simulated data is varying mean

vectors and the varying covariance matrices which was checked by our procedure.

Each of the 100 different samples of multivariate data were then analyzed using the

AICPARM program of Bozdogan (1983). The results of one such sample is given in Table

5.5 for clustering K = 5 simulated class types of different groups into k = 1,2,3,4, and

5-Sample Clusters on all variables and the corresponding AIC's and SC's are shown for each

of the clustering alternatives.

Looking at Table 5.5, we see that for this particular sample AIC picks k = 5 as

being the correct number of classes (submodel 52), and then among the k = 4-Sample

Clusters it picks alternative submodel 47; among the k = 3-Sample Clusters it picks
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submodel 25; and finally among the k = 2-Sample Clusters it picks submodel 2 as the best

clustering alternative, respectively in a hierarchical fashion. According to AIC, we never

cluster the five class types as one homogeneous group (submodel 1).

Looking at the same results for SC's we see that SC incorrectly picks k = 4-Sample

Cluster in submodel 47 as being the correct structure, demonstrating a tendency toward

underfitting the underlying random process.

Among all the 100 different samples, we also selected the best clustering alternatives

for k = 1.2,3,4, and 5-Sample Clusters on the basis of the minimum AIC and SC procedures.

The following is a list of these best clusters:

k = 1 (1,2,3,4,5) 100 times out of 100 samples = 100%

k = 2 (1,2,3,4) (5) 75 times out of 100 samples = 75%
(1,4,5) (2,3) 25 times out of 100 samples = 25%

k = 3 (1,4) (2,3) (5) 100 times out of 100 samples = 100%

k = 4 (1) (4) (2,3) (5) 100 times out of 100 samples 100%

k = 5 (1) (2) (3) (4) (5) 100 times out of 100 samples = 100%

This result is shown in Figure 5.1 in terms of a decision tree which is the structure
of our optimal decision tree classifier. The suboptimal decision tree classifier is shown in

Figure 5.2, and the tree which was picked incorrectly by SC is shown in Figure 5.3.

Thus, in general, if we already know a priori what k should be, AIC and SC agree

over all the samples on which clustering is optimal. In our experiment, AIC always chose
the optimal value of k as five, the correct number of underlying heterogeneous normal

populations from which each of the samples were t. 'en. However, SC only picks 5

populations 99% of the time. It incorrectly picks k = 4 in one of the samples the results of

which are given in Table 5.4 as we discussed above.
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6. CON~CLUS[ONS

The results of the above method clearly illustrate the flexibility of the minimum AIC

and SC procedures over the classical hypothesis testing. We see that AIC and SC can

indeed identify the best clustering alternatives when we cluster samples into homogeneous

sets of samples under the best fitting model. We can detect the source of heterogeneity

without any lengthly calculations or subjectivity, and we can measure the amount of

homogeneity and heterogeneity in clustering samples. With this new approach it is now
possible to determine a Driori whether we should use equal or varying covariance matrices in
the analysis of a data set. We can reduce the dimensionality of data sets as shown on the

variety of rice data set, and we do not need to assume any arbitrary level of significance a

and table look-up.

The model selection by AIC and SC is also more satisfying since all the possible

clustering alternatives are considered.

Thus, from the results presented in this paper, we see that both AIC and SC unify

*the conventional test procedures and avoid the existing ambiguities inherent in these

procedures. They avoid any restriction on K, the number of classes or groups, and p, the

number of variables. The use of AIC and SC show how to combine the information in the

likelihood with an appropriate function of the parameters to obtain estimates of the

information provided by competing alternative models. Therefore, the definition of AIC and

SC give clear formulation of the principle of parsimony in statistical model building orI
comparison as we demonstrated by numerical examples.

In concluding, the new approach presented in this paper will provide the researcher
with a concise, efficient, and a more refined way of studying simultaneous comparative

inference for a particular multi-sample data set. The ability of AIC and SC to allow the

* researcher to extract global information from the results of fitting several models is aI
unique characteristic that is not shared by the conventional procedures nor is it realized by
conventional significance tests.

Therefore, for these reasons the use of model-selection criteria is recommended in

conjunction with Multi-Sample Cluster Analysis (MSCA) as an alternative to Multiple
Comparison Procedures (MCP's).
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APPENDIX COMBINATORIAL SUBROUTINES

Here we give a listing of major combinatorial subroutines which we implemented in a

newly developed statistical computer software by this author called AICPARM: A General

Purpose Program for Computing AIC's for Univariate and Multivariate Normal Parametric

Models. For a lucid discussion and details on combinatorial algorithms, we refer the reader

to Nijenhuis and Wilf (1978).

A.I MCP: Combination of K samples Taken k at a Time for MCP's in Lexicographic Order

This subroutine generates and lists different combinations of K groups or samples

taken k at a time sequentially. There are [K] k-subsets of a K-set altogether, and MCP

is a simple algorithm which constructs the all possible alternatives in "lexicographic", that

is, in "alphabetical order". A listing of the output from this program is shown in Table

3.1.

PROGRAM MCP

PROGRAM MCP

INTEGER A(100),N,K,HM2

LOGICAL MTC

MTC = .FALSE.

PRINT *,'K CHOOOSE k'

PRINT *,'WHAT IS K?'

READ *,N

PRINT *,'WHAT IS k?'

V READ -,K

10 CONTINUE

CALL NEXKSB(N,K,A,MTC,H,M2)

PRINT 2, (A(I),I=1,K)

2 FORMAT(30(1X,[1))

IF(MTC) GOTO 10

END
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SUBROUTINE NEXKSB(NKA,MTC)

INTEGER A(K)

LOGICAL MTC

INTEGER H,M2

SAVE H,M2

30 IF(MTC) GOTO 40

20M2=0

H=K

GOTO 50
40 IF(M2.LT.N-H) 11=0

H=H+l

M2=A(K+1-H)

50 DO 51 J=1,H

51 A(K+J-H)=M2+J

o MTC=A(l).NE.N-K+1
RETURN

END
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A.2 STIRN2: Stirling Number of the Second Kind

This subroutine constructs a table of the total number of clustering alternatives for

various values of K, number of samples, and k varying number of clusters of samples. A

listing of the output from this program is shown in Table 3.2.

PROGRAM STIRN2

PROGRAM STIRN2

REAL S(20,20),T

INTEGER N,K

C

S(1,2)=0.

DO 5 1=1,20

S(I,1)=1.

5 CONTINUE

C

PRINT 30,'TOTAL',(I,I=1,20)

30 FORMAT(13XA,6(114,1X),3(:/T19,6(I14,IX))

40 FORMAT(12,1X,7(114,1X),3(:/T19,6(114,1X))

C

PRINT 40,1,1,1

DO 20 N=2,20

T=1.

DO 10 K=2.N
S(N,K)=K*S(N-1,K)+S(N-1,K-1)

T=T+S(N,K)

10 CONTINUE

PRINT 40,NT,(S(N.I).If1,N)

20 CONTINUE

Cc
C

END
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A.3 REPFM: Representation Forms of Clustering Alternatives

Clustering alternatives can be classified according to their representation forms to

make it easy to list all possible clustering alternatives. The subroutine REPFM gives the

partition of K (number of samples) which is a positive integer, into a specified k number of

parts. For example, the representation forms of K=6 samples into k=3 parts are:

6 = (4) + (1) + f1)

= (3) + (2) + (1)

= (2) + (2) + (2)

PROGRAM REPFM

PROGRAM REPFM

INTEGER N,D,I,K

INTEGER R(100),M(100)

LOGICAL MTC,FIRST

EXTERNAL NEXPAR

MTC = .TRUE.

FIRST = .TRUE.

PRINT *,'WHAT IS N?'

READ *,N

10 CONTINUE

IF(MTC) CALL NEXPAR(N,R,M,D,MTC,FIRST)

PRINT 2,((R(I),K=1,M([)), =1,D)
2 FORMAT (30(IX,11))

[F(MTC) GOTO 10

STOP

END

SUBROUTINE NEXPAR(N,R,M,D,MTCFIRST)

INTEGER N,M,RS,D,SUM,F

LOGICAL MTC,FIRST

DIMENSION R(N),M(N)

INTRINSIC MOD

SAVE
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[F(.NOT.FIRST) GOTO 20

FIRST = .FALSE.
30 S=N

D=0

50 D=D+l
R(D)=S

M(D)=l

40 MTC=M(D).NE.N

RETURN

20 IF(.NOT.MTC) GOTO 30
SUM=1

IF(R(D).GT.1) GOTO 60
SUM=M(D)+l

D-D-1
q60 F=R(D)-l

IF(M(D).EQ.1) GOTO 70

M(D)=M(D)-l

D=D.1
70 R(D)=F

M(D)=1+SUM/F

S=MOD(SUM,F)

IF(S) 40,40,50

END

V 40



A.4 ALLSUB: All Possible Partitioning of K-Samples into k-Sample Clusters

- This subroutine generates and lists all the simple patterns of clustering alternatives
for a specified number of samples K for Multi-Sample Cluster Analysis. A listing of the-output from this program is shown in Table 3.3.

- PROGRAM ALLSUB

PROGRAM ALLSUB

INTEGER N,NC
INTEGER P410001Q100)

* CHARACTER'80 LIST

* EXTERNAL NEXEQU
LOGICAL MTC

q PRINT *,'HOW MANY GROUPS?'
READ *N

* MTC = .FALSE.

* 10 CALL NEXEQU(N,NC,P,Q,MTC)
CALL NEXLST(NP,Q,NC)

- IF(MTC) GOTO 10
- END)

SUBROUTINE NEXEQU(N,NC,P,Q,MTC)

INTEGER P(N),Q(N)

* LOGICAL MTC

% SAVE
* IF(MTC) GOTO 20

10 NC=1

* DO 11 [=1,N

11 QI=
P(I)=N

4 60 MTC=NC.NE.N
RETURN20 M=N

30L=Q(M)

IF(P(L).NE.l) GOT1O 40

Q(M)=1

~ M=M-1

Li 41
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Table 3.1 A Simple Pattern of Clustering Alternatives of Multipie Comparison

for Different Combinations of K Samples Taken k at a Time

Combinations Alternatives Clustering

2-Subsets 3-Subsets 4-Subsets

1 (1,2)

22 (1,3)
3 (2,3)

1 (1.2) (1,2,3)
2 (1,3) (1,2,4)

(4) (]3 (1,4) (1,3,4)
LJ4 (2,3) (2,3,4)

5 (2,4)

6 (3,4)
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.

1 (1.2) (1,2,3) (1.2,3,4)

2 (1,3) (1,2,4) (1,2,3,5)
3 (1.4) (1.2.5) (1,2,4,5)(' ~ .()4 (1,5) (1,3,4) (1,3,4,5)

1.I5 (2,3) (1,3,5) (2,3,4,5)
6 (2.4) (1,4,5)

7 (2,5) (2,3,4)
8 (3,4) (2,3,5)

9 (3,5) (2,4,5)

10 (4.5) (3,4,5)



Table 3.2 Number of Clustering Alternatives s Values of K and k

k 1 2 3 4 5 6 7 8 10 Total

K

10 1 52

6 1 31 90 65 15 1 203

*7 1 63 301 350 140 21 1 877

*8 1 127 966 1701 1050 266 28 1 4140

9 1 255 3025 7770 6951 2646 462 36 1 21147

*10 1 511 9330 34105 42525 22827 5880 750 45 1 115975



Table 3.3 A Simple Pattern of Clustering Alternatives of Multi-Sample Cluster

Analysis of K Samples into k Varying Number of Clusters of Samples

No. of Clustering Alternatives Clustering k

Alternatives

1 (1,2,3)1

K -3 2 (1,2) (3) 2
2 S13,k)=5 3 (1,3) (2) 2

k-i
4 (2,3) (1) 2

5 (1) (2) (3) 3

1 (1,2,3,4) 1

62 (2,3,4) (1) 2

3 (1,3,4) (2) 2

4 (1,2,4) (3) 2

5 (1,2,3) (4) 2

K-4 6 (1,4) (2,3) 2
Z S(4,k)=15 7 (1,3) (2,4) 2

k-i
8 (1,2) (3,4) 2

9 -34 -1 (2 -3

10 (2,4) (1) (3) 3

10 (2,3) (1) (4) 3

12 (1,4) (2) (3) 3

13 (1,3) (2) (4) 3

*14 (1,2) (3) (4) 3

K: 14 (1. 2) (3) (4) 4

-

15()() 3 4



Table 5.1 Pairwise Comparisons of Four Varieties of Rice on All Variables

Under the MANOVA Modei

Alternative Varieties k 2m AIC({u M)

9-

1 (A,B) 1 10 164.322

2 (A,C) 1 10 1 3 9 .0 4 6 a

3 (A.D) 1 10 153.147

4 (B,C) 1 10 153.705

5 (B.D) 1 10 1505

6 j (C.D) 1 10 146.396

NOTE: n =10 observations ; p =2 variables; m =kP + p(P+1)/2 parameters

AIC((u MX) = nplog (2Pr) + niog~ i n- + np +2m.

a First minimum AIC; i.e., best homogeneous pair
b Second minimum AIC; i.e., second best homogeneous pair

Indicates that there is a difference between varieties A and B.
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Table 5.2 Multi-Sampie Cluster Analysis of K = 4 Varieties of Rice into

k = 1,2,3, and 4-Sampie Clusters,

The AIC's and SC's on All Variables

Alternative Clustering k m AIC({u ,Z)) SC((({ ,z))
9 -g

1 (1,2,3,4) 1 5 185.440125* 190.418762"

2 (2,3,4) (1) 2 7 180.937897* 187.907990

3 (1,3,4) (2) 2 7 183.446991 190.417084

4 (1,2,4) (3) 2 7 187.684692 194.654785

5 (1,2,3) (4) 2 7 183.596893 190.566986

6 (1,4) (2,3) 2 7 185.540253 192.510345

7 (1,3) (2,4) 2 7 175.777649* 182.7477422

8 (1,2) (3,4) 2 7 188.730988 195.701080

9 (3,4) (1) (2) 3 9 181.179932 190.141510

10 (2,4) (1) (3) 3 9 177.366486 186.328064

11 (2,3) (1) (4) 3 9 180.485565 189.447144

12 (1,4) (2) (3) 3 9 185.593323 194.554901

13 (1,3) (2) (4) 3 9 176.8367312 185.798309

14 (1,2) (3) (4) 3 9 187.137421 196.098999

15 (1) (2) (3) (4) 4 11 178.289734" 189.242767"

NOTE: A = 1, B 2, C 3, and D 4; n 20 observations

p = 2 variables; m = kp + p(p+1)/2 parameters;

AIC((ug,_)) = nploge(2 r) + nloge n-I w I +np + 2m

SC((g,_) = nPloge(2) + niog I + np + miog(n)

Minimum AIC's and SC's for k 1,2,3 and 4-sampie clusters, respectiveiy.

..,. , , .. .... . . . .. .: . . : ? : ". - . .
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Table 5.3 Univariate AIC's on p = 2 Variables for Four Varieties of Rice

Variables AIC((ug,, 2)

1. Height of Plant 111.70

2. Number of Tillers Per Plant 65.94

NOTE: AIC({Wgc 2J) = nlog (27) + nloge(SS W) + n + 2(k+1)

'Indicates that there is a difference in heights between
the varieties.

...... , . . "%° .....-...............- ,....................,...--..-............................



Table 5.4 The Class Statistics of Landsat-2

Multispectral Scanner (MSS) Signatures

Class Type Channel Mean Vector Covariance Matrix

1 27.7 12.7 25.0 -51.4 -30.81
(1) Non-Wheat 2 24.5 25.0 63.4 -140.7 -84.21

n1=50 3 75.1 51.4 -140.7 415.5 242.1%

4 37.4 30.8 -84.2 242.1 143. 4
1 4. [. 17.2 8.8 0.6

(2) Non-Wheat 2 140.4 17.2 30.0 9.9 -1.2

n =347.0 8.8 9.9 27.3 10.4n2743 19.7J 0.6 -1.2 10.4 6.

i 1 3.3 2.6 2.6 4.3 1.9
(3) Non-Wheat 2 38.5 2.6 7.2 2.5 0.3

110.31 _ 4.3 2.5 41.2 19.9
1 .71 1.9 0.3 19.9 11.1

1 285 5.8 7.4 -6.0 -43
(4) Winter Wheat 2 27.5 7.4 16.2 -14.4 -8.9

n4=125 3 51.2 -4 -6.0 -14.4 26.7 14.1
4 24.0 -4.3 -8.9 14.1 9.0

1 21.5 7.3 10.3 4.1 -1.0
(5) Winter Wheat 2 16.7 10.3 18.0 4.9 -2.8

n5=150 3 =i54.9 5 4.1 4.9 26.0 11.4
4 29.1 - 1.0  -2.8 11.4 8.1

4%Lm

I,

4



Table 5.5 Multi-Sample Cluster Analysis of K = 5 Simulated Class Types of
Different Crops into k 1,2,3,4, and 5-Sample Clusters,

The AIC's and SC's on All Variables

Alternative Clustering k In AIC((ug,) SC(((MI g)

1 (1,2,3,4,5) 1 14 11650.509766* 11709.513672*

2 (1.2,3,4) (5) 2 28 10434.767578* 10552.775391*
3 (1,2,3,5) (4) 2 28 11100.183594 11218.191406

4 (1,2,4,5) (3) 2 28 11102.822266 11220.830078

5 (1,3,4,5) (2) 2 28 11223.681641 11341.689453

6 (1) (2,3.4.5) 2 28 10954.841797 11072.849609

7 (1,2,3) (4,5) 2 28 10753.361328 10871.369141

8 (1,2,4) (3,5) 2 28 11195.396484 11313.404297

9 (1,2,5) (3,4) 2 28 11245.294922 11363.302734

10 (1,3,4) (2,5) 2 28 11121.404297 11239.412109

11 (1.3,5) (2,4) 2 28 11340.630859 11458.638672

12 (1,4.5) (2,3) 2 28 10475.867188 10593.875000

13 (1,5) (2,3,4) 2 28 10612.294922 10730.302734

14 (1,4) (2,3,5) 2 28 10763.261719 10881.269531

15 (1,3) (2,4,5) 2 28 11045.414063 11163.421875

16 (1,2) (3,4,5) 2 28 11122.408203 11240.416016

17 (1) (2,5) (3,4) 3 42 10669.160156 10846.171875

18 (1) (2,4) (3,5) 3 42 10737.947266 10914.958984

19 (1) (2.3) (4.5) 3 42 9931.666016 10108.677734
20 (1,5) (2) (3,4) 3 42 10321.367188 10498.378906

21 (1.5) (2,4) (3) 3 42 10301.919922 10478.931641
.. 22 (1,5) (2,3) (4) 3 42 9684.330078 9861.341797

22 (1,4) (2) (3,5) 3 42 10377.035156 10554.046875

24 (1,4) (2,5) (3) 3 42 10288.802734 10465.814453

*"-"25 (1,4) (2,3) (5) 3 42 9378.460938* 9455.472656*

26 (1,3) (2) (4,5) 3 42 10464.267578 10641.279297

27 (1,3) (2,5) (4) 3 42 10564.726563 10741.738281

28 (1,3) (2,4) (5) 3 42 10171.974609 10348.986328

29 (1.2) (4,5) (3) 3 42 10418.652344 10595.664063

i 30 (1,2) (3.5) (4) 3 42 10607.343750 10784.355469

,o



31 (1,2) (3,4) (5) 3 42 10145.806641 10322.818359

32 (1,2,3) (4) (5) 3 42 9788.210938 9965.222656

33 (1,2,4) (3) (5) 3 42 10041.552734 10218.564453

34 (1,2,5) (3) (4) 3 42 10552.988281 10730.000000

35 (1,3,4) (2) (5) 3 42 10055.792969 10232.804688

36 (1.3,5) (2) (4) 3 42 10667.771484 10844.783203

37 (1,4,5) (2) (3) 3 42 10420.597656 10597.609375

38 (1) (2,3,4) (5) 3 42 9894.478516 10071.490234

39 (1) (2,3,5) (4) 3 42 10451.314453 10628.326172

40 (1) (2,4,5) (3) 3 42 10457.542969 10634.554688

41 (1) (2) (3,4,5) 3 42 10580.152344 10757.164063

42 (1) (2) (3) (4,5) 4 56 9876.396484 10112.414063

43 (1) (2) (3,5) (4) 4 56 10065.087891 10301.105469

44 (1) (2) (3,4) (5) 4 56 9603.550781 9839.568359

45 (1) (2,5) (3) (4) 4 56 9976.855469 10212.873047

46 (1) (2,4) (3) (5) 4 56 9584.103516 9820.121094

47 (1) (2,3) (4) (5) 4 56 8966.513672' 9202.531250*

48 (1,5) (2) (3) (4) 4 56 9629.060547 9865.078125

49 (1,4) (2) (3) (5) 4 56 9223.191406 9459.208984

50 (1,3) (2) (4) (5) 4 56 9499.115234 9735.132813

51 (1,2) (3) (4) (5) 4 56 9453.501953 9689.519531

52 (1) (2) (3) (4) (5) 5 70 8911.246094* 9206.267578"

NOTE: n = 500 total number of observations; p = 4 variables

m = kp + kp(p+l)/2 parameters;

k
AIC((ug,lg)) nploge(2K) + g nlg nng I+np+2m

k
SC((I g,_g)) npioge(2 m) + n ngloge In 9 61 + np + mloge(n)

ii

. ... .... ...... ...-.
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-STAGE 1: (1,2,3,4,5)

STAGE 2: (1,2,3,4) (5)

STAGE 3: (4)(2,3)

STAGE 4: () (4)

STAGE 5: (2) (3)

Figure 5.1. OPTIMAL DECISION TREE CLASSIFIER. This tree structure associated with

the class statistics given in Table 5.4 was- picked 75 times in the 100 different samples

using the minimum AIC procedure, and it was picked 74 times by using the minimum SC

procedure.
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STAGE 1: (1.2,3,4,5)

1 I
STAGE 2: (1,4,5) (2,3)

I I
STAGE 3: (1,4) (5)

STAGE 4: (1) (4)

STAGE 5: 12) (3)

Figure 5.2. SUBOPTIMAL DECISION TREE CLASSIFIER. This tree structure associated

with the class statistics given in Table 5.4 was picked 25 times in the 100 different

samples using the minimum AIC and SC procedures.
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*STAGE 1: (1.2.3,4,5)

STAGE 2: (1.2.3,4) (5)

*STAGE 3: (1,4) (2.3)

STAGE 4: (1) (4)

STAGE 5: (2) (3)

Figure 5.3. WRONG~ DECISION TREE CLASSIFIER. This is the tree structure which was

picked by the minimum SC procedure wrongfully, that is, SC missed the correct structure.
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